If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2-30a+36=0
a = 5; b = -30; c = +36;
Δ = b2-4ac
Δ = -302-4·5·36
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{5}}{2*5}=\frac{30-6\sqrt{5}}{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{5}}{2*5}=\frac{30+6\sqrt{5}}{10} $
| 20x-7=5(4x+2) | | |3x-4(x+1)|=2 | | 3(m-5)=18 | | 3^(2m-1)=27 | | (x/12)+32=39 | | 40-2d=4d-20 | | 8+2r-r=-7 | | 12x+60=10x+60 | | -5/3=1/2v-9/5 | | 16=7x+-5x | | -8y+17=-81+6y | | -4-9n=176 | | k−(−5/6)=−1/6 | | -2(u-6)=-7u-3 | | 8r^2+14r-9=10r | | (7x+234)+(3x+136)=180 | | 33=15+2(x-2) | | 20-3x=15,5 | | 78=6(t-76) | | 3(y-1)=4(y-1.5) | | 6/35*r=18/25 | | 5x+8=1x+16 | | (d-10)+(2d-20)= | | -8(u-8)-3=61 | | 2-(a+5)-2=7 | | 3x•6=-2x-4 | | 6x+8–2x=3x+4 | | 27-34z+10=6z+14z-35 | | 17,000(0.06/12)=x | | -11=8d-3(7+d) | | 9=2u-1 | | x/2.5=-20 |